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Structural Dynamic Loads in Response to Impulsive Excitation

Mordechay Karpel* and Eyal Presentet
Technion-Israel Institute of Technology, Haifa 32000, Israel

The modal approach is used to analyze the dynamic loads on a flexible structure due to local impulsive
excitations such as that caused by store ejection from a flight vehicle. First-order, time-domain equations of
motion in generalized coordinates are constructed for restrained and free-free structures, without and with
unsteady aerodynamic effects. The dynamic loads associated with the structural response are expressed by the
mode displacement (MD) and by the summation-of-forces methods. The MD approach is simpler and easier to
apply, but requires the inclusion of more modes for obtaining results of acceptable accuracy. A rigorous
comparison between the resulting loads shows that the performance of the MD method is especially poor when
the excitation is local and impulsive. A dramatic improvement is obtained when the generalized coordinates are
based on normal modes calculated with fictitious masses at the excitation points. Fictitious masses are also used
to generate artificial load modes that yield simple and efficient expressions for integrated shear forces, bending
moments, and torsion moments at various structural sections.

Nomenclature
[A] = state-space system matrix
[/4,], [A2] = aerodynamic approximation coefficients,

Eq. (25)
[AFC(ik)] = complex unsteady aerodynamic force

coefficient matrix, Eq. (24)
[As] = aerodynamic force coefficient matrix at

structural grids, Eq. (24)
[B] = discrete-coordinate damping matrix
[B] = generalized damping matrix in aeroelastic

model, Eq. (26)
b = reference semichord
[b] = state-space input distribution matrix
[D], [E] = aerodynamic approximation coefficients,

Eq. (25)
{F(t)} = vector of external forces
{Fcx} = vector of prescribed excitation forces
[GB] — generalized structural damping matrix
[GK] = generalized structural stiffness matrix
[GM] = generalized structural mass matrix
[K] = discrete-coordinate stiffness matrix
[K] = generalized stiffness matrix in aeroelastic

model, Eq. (26)
k = reduced frequency, cob/V
{L} = vector of integrated section loads
[M] = discrete-coordinate mass matrix
[M] = generalized mass matrix in aeroelastic

model, Eq. (26)
n = number of DOF in finite element model
nm = number of modes taken into account
[Qjf(ik)] = approximated generalized aerodynamic

force coefficient matrices
[<2(//c)] = generalized aerodynamic force coefficient

matrix
q = dynamic pressure
[R] = diagonal aerodynamic lag matrix, Eq. (25)
s = Laplace variable
[TAS], [Tcs] = spline transformation matrices, Eq. (24)
[rrh] = rigid-body transformation matrix, Fig. 1
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[TaS\ = spline transformation matrix, Eq. (24)
t = time
{u} = discrete structural displacement vector
V = true airspeed
{jc} = state vector
y = distance along wingspan
[f] = diagonal modal damping coefficient matrix
{£} = generalized displacements
[</>] = matrix of natural modes
[x,,] = matrix of vibration modes after fictitious

masses are extracted
[co,,] = diagonal matrix of natural frequencies mass

Subscripts
a = aerodynamic
/ = modes with fictitious masses
/ = inboard section
/ = load modes
md = mode displacement
n = nominal system
o = outboard section
5 = structural
sof = summation of forces

Introduction

T HE structures of ground, flight, and space vehicles have
to be designed to withstand all the static and dynamic

loads they may encounter. The determination of the incre-
mental loads due to time-dependent excitation forces is based
on time-domain dynamic response analysis. The net load
distribution at a time point during the response is a combi-
nation of the prescribed excitation forces, the D'Alembert
inertial forces, and other forces that result from the structural
response, such as unsteady aerodynamic forces. Integrated
loads, such as shear, bending moment, and torsion at a wing
section, are calculated during the response analysis. Extreme
values of integrated loads are used to define the time points
at which load distributions are calculated for stress analysis.

The dynamic response analysis is commonly based on the
modal approach1 in which the structural displacements are
represented by a set of low-frequency natural vibration modes
(including rigid-body modes), which serve as generalized co-
ordinates. While a typical discrete-coordinate finite element
model may have thousands of degrees of freedom (DOF), a
typical generalized-coordinate equation of motion has 10-25
DOF (the number of modes taken into account). The number
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of required modes depends on the application, the computer
resources, and the required accuracy.

Bisplinghoff et al.1 described two methods for calculating
dynamic loads from the time response in generalized coor-
dinate, the mode displacement (MD) and the mode accel-
eration (MA) methods. The MD method estimates the ex-
ternal loads from the modal deformations only. The MA
method, originally developed by Williams,2 adds the inertial
response loads (calculated from modal accelerations) to the
prescribed excitation forces. Williams pointed out the partic-
ular advantage of the MA method in calculating loads due to
impulsive excitation. An extension of the MA method, which
allows other than inertial response-dependent forces, is the
summation-of-forces (SOF) method. Applications of the MD
and SOF methods in aeroelastic frequency response to aero-
dynamic excitation are described in Ref. 3. The applications
showed that, with eight elastic modes taken into account, both
methods were in good agreement. However, with only three
elastic modes considered, the SOF method was significantly
more accurate than MD.

In cases of time response to local impulsive excitation, such
as store ejection or landing, the MD method performs much
worse than in Ref. 3. The main reason is that concentrated
forces cause local deformations that are not represented in
the low-frequency vibration modes. The SOF method is less
sensitive to local response effects, but is more difficult to
apply, especially when time-domain unsteady aerodynamic
effects are involved. The main purposes of this work are to
increase the efficiency and accuracy of the two methods in
cases of impulsive excitation, and to perform a thorough com-
parison between them in application to the dynamic response
of aeroelastic systems to store ejection.

The impulsive excitation forces during the release of ex-
ternal stores (and in other local-excitation cases) are acting
at a small number of DOFs. The improvement of the MD
loads is obtained in this work by introducing fictitious masses
at the excitation point when the modes are calculated, which
causes local deformations in the low-frequency modes, and
then removing them in the subsequent dynamic response anal-
ysis. The fictitious-mass idea was introduced by Karpel and
Newman4 in the context of modal substructuring. Later ap-
plications included repetitive analysis of aircraft with multiple
external store configurations,5 eigenvalue sensitivities of con-
trol augmented structures,6 and flutter analysis with large local
structural changes.7 s

Unsteady aerodynamic force coefficient matrices are nor-
mally available as transcendental functions of the harmonic
vibration frequency. The inclusion of unsteady aerodynamic
effects in time-domain dynamic response analysis requires the
unsteady aerodynamic matrices to be approximated as ra-
tional functions of the Laplace variable s. The most common
rational approximation method is the term-by-term procedure
of Roger.9 A more general matrix approximation formula is
employed by the minimum-state method.10 12 The minimum-
state nonlinear approximation procedure is more complicated
than the linear procedure of Roger, but it typically yields a
significant reduction in the resulting model size per desired
accuracy. The SOF method requires the approximation coef-
ficients to appear not only in the equations of motion, but
also in the output equation. It is desired to approximate the
output coefficients in a way that does not require additional
aerodynamic states. Pototzky and Perry3 developed such
expressions for output parameters in Roger's approximation.
The extension of the minimum-state method to include output
expressions is a part of the work presented in the following
sections.

Structural Equations of Motion
State-space structural equations of motion, in which fic-

titious-mass modes are used as generalized coordinates, were
developed in Refs. 7 and 8 in the context of flutter analysis

with large local structural changes. Key equations are re-
peated in this section for the sake of clarity and completeness.
The matrix equation of motion of an n degrees-of-freedom
nominal structure is

(1)

The common modal approach transforms Eq. (1) to modal
coordinates by assuming that {u} is a linear combination of a
subset of nm low-frequency natural modes of the nominal
structure, where nm « n. The fictitious-mass approach uses
normal modes of the fictitious system

[M + Mf]{ii} + [K]{u] = {0} (2)

where [Mf] is a matrix of fictitious masses. The fictitious masses
are placed in our application at the mf DOF in which the
impulsive excitation is applied. The values of the fictitious
masses should be large enough to cause significant local de-
formations at the low-frequency modes, but not too large, to
avoid numerical ill-conditioning. The n x nm matrix of ei-
genvectors [</>,], associated with Eq. (2), satisfies

(3)

where [a)f]2 is a diagonal matrix of real non-negative eigen-
values. The diagonal generalized mass and stiffness matrices
are

[GMf] = [4fY[M +

[GKf} = [4>fV[K][<f>,] =

(4)

(5)

The basic assumption of the modal approach, when applied
with fictitious-mass modes, is

Substitution of Eq. (6) in Eq. (1), and premultiplication by
[</>/]7, yield

[GMf,,]{Slf} 4- [GBf]{^f} + [GKf]{£f} = [<l>f\T{F(t)} (7)

where

[CM,,] = [CM,] - [4fY[Mf}[<l>f}

and, when [B] is available, the generalized damping matrix

[GBf} = [4>fY (8)

The usual case is, however, that [B] is not available and the
generalized damping coefficients are chosen using engineering
judgment or vibration test results. Since the generalized co-
ordinates in Eq. (7) are not natural modes of the physical
system, the assignment of damping coefficients needs special
treatment.7 We first calculate the complete sets of frequencies
and eigenvectors [w,,] and [x,,], associated with the undamped,
free equation of motion

\GMfMf} + [GK,]{(,} = {0} (9)

where the eigenvectors in [%„] are normalized to yield

[GM,,] = [xnY[GMf,,][x,,] = [I] (10)

We can now use the coordinate transformation {gf} = [x,,]{£fl},
to transform Eq. (7) into the uncoupled equation
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where [£„] is a diagonal matrix of modal damping coefficients
associated with the natural frequencies in [o)n]. The matrix of
natural modes associated with [(*)„] is [</>„] = [#„][$/]. When
the columns of [(/>„] and the associated frequencies in [con] are
compared to those calculated directly from the nominal finite
element model, they appear in two groups. The low-frequency
group is practically identical to the directly calculated modes.
The modes in the high-frequency group, whose number and
nature depend on the number and magnitudes of the fictitious
masses, do not represent actual normal modes, but are syn-
thetic modes with relatively large local distortions in the vi-
cinity of the fictitious masses. The coordinate transformation
that leads to Eq. (11) may be inconvenient and computation-
ally inefficient, especially when unsteady aerodynamic forces
are involved. An alternative way, which is used in the re-
mainder of this article, is to use Eq. (7) with

and the SOF integrated loads

[GB,] = 2[GMf,][xM]M[x,,V[GMf,,] (12)

which is "effectively diagonal"7 because it would yield Eq.
(11) if the transformation is performed.

The state-space, first-order form of Eq. (7) is

*} = [A\{x] (13)

where

H -

-[GM,a]->[GKf] -[GM,n]->[GB,]

Loads Equations
A loading case, for the purpose of structural design, is the

vector of the forces that are in equilibrium with the internal
elastic forces of the finite element system in Eq. (1):

(14)

which indicates that, knowing the structural dynamic response
from Eq. (13), {F,(OI can rje found by either calculating the
elastic forces in the second part of Eq. (14), or by the sum-
mation of the excitation, the inertial (D'Alembert), and the
damping forces in the right part of Eq. (14). The contribution
of the damping forces to the loads distribution is negligible
in cases of lightly damped structures. When the modal as-
sumption of Eq. (6) is used with an incomplete set of modes,
the two computation methods do not yield identical results.
The first one yields the MD loads, via Eqs. (3) and (6):

{Fmd(r)} = = [M (15)

The second computation method yields the SOF loads, via
Eq. (6) with damping forces neglected:

{Fsof(/)} = (16)

Detailed loading cases for stress analysis are calculated only
at extreme conditions. The time points at which extreme con-
ditions occur are defined by criticality criteria that are based
on selected integrated loads, such as shear force and bending
moments at a wing section. Section loads are calculated by
integrating the distributed loads over the structure, between
the section and a free end, with multiplication by the appro-
priate arms for section moments. A matrix '[</>/] of kinematic
'load modes'1 is defined for the numerical integration to ob-
tain the MD integrated loads

The shape of a load mode in [(/>/] is that of a broken structure
with rigid-body segments. The definition of [</>/] and the ma-
trix operations to obtain the load coefficient matrices, here
and in the aeroelastic models below, might require extensive
postprocessing work because they are not standard features
of common finite element codes such as MSC/NASTRAN.13

A new technique, which simplifies the matrix operations and
facilitates a convenient way to define the load modes, is pre-
sented here. The technique extends the way control modes
are treated in Ref. 14 to allow an overdetermined connection
between the structural segments. Fictitious-mass concepts are
used with very large masses to obtain the rigid-body load
modes from the same natural mode analysis that generates
the structural modes, without affecting them.

The following changes, described in NASTRAN's termi-
nology, are introduced to the finite element model in order
to deal with integrated loads at a certain section (see Fig. 1).

1) The section grid points are triplicated to form three
collocated identical groups that define an inboard, a middle,
and an outboard section. The respective displacement vectors
are {11,-}, {M;II}, and {u(,}.

2) The inboard points must be connected to the inboard
structural elements only, and the outboard points to the out-
board elements.

3) A new grid point with n, degrees-of-freedom {«/}, which
represent the relative motion, where n, < 6 is the number of
the desired section load modes, is added at a reference point
in the section. The output coordinate system associated with
this grid point defines the reference axes for bending and
torsion.

4) The middle-section coordinates are connected with rigid
elements (RBE2 in NASTRAN) to the reference point, which
defines the constraints {um} = [Trb]{u,}, where [Trb] is a rigid-
body transformation and {u,,,} becomes dependent.

5) Another set of constraints defines {u(>} = {*/,} + {um} [by
multi-point constraint (MFC) cards in NASTRAN] such that
{u(,} becomes a dependent displacement set that satisfies

= {u,} + [Trb]{u,} (19)

6) The coordinates {u/} are loaded with a diagonal mass
matrix [M/] whose elements are very large (several orders of
magnitude larger than other mass elements, including the
fictitious masses in [My]).

The modified model has n, more DOFs than the original
one. Normal modes analysis of the modified model produces
two sets of modes. The n, load modes appear as rigid-body
modes [<$>/] that can be normalized such that the partition
associated with the relative motion {«/} is a unit matrix. Since

{Lmd(0} = (17)

RIGID

SECTION

Fig. 1 Modeling of a section at which integrated loads are requested.
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{«,} is loaded with very large masses, these modes consist of
the added relative motion only, whereas the inboard segment
does not move and the outboard segment is kinematically
defined by the relative motion. As argued below, the other
modes are practically identical to the original modes [<£y],
expanded to include the small modal deflections [</>/7] asso-
ciated with {11,}. Since the load modes and the structural modes
are extracted in the same eigensolution, they are orthogonal,
which implies

which yields

(21)

Since the diagonal terms in [M,] are very large, the terms in
[</>/7] are very small, which implies that the changes introduced
to generate the load modes have a negligible effect on the
structural modes. Substitution of Eq. (21) into Eqs. (17) and
(18) yields

{Lmd(/)} = - (22)

(23)

The advantage of the modified MD coefficients in Eq. (22),
over the original ones in Eq. (17), is very clear. The need for
explicit definition of [</>/] is eliminated, and the computations
now involve only the few large masses, the modal deflections
at the large-mass coordinates, and the elastic natural fre-
quencies, compared to the large-order mass and mode ma-
trices in Eq. (17). The SOF coefficients of {£,} in Eq. (23)
are also considerably easier to compute compared to those in
Eq. (18) because there are only a few nonzero terms in [Mf]
as well. Still, {Lsof} is a function of the excitation forces and
all the states, via {£,} in Eq. (13), while {Lmd} is a function
of the displacements only. The computational advantage of
the MD method over SOF is even bigger when the external
forces are affected by the structural motion, which is the case
when unsteady aerodynamic forces are involved.

Aeroelastic Equations
The structural dynamic response of a flying vehicle involves

unsteady aerodynamic forces generated by surface motion.
Common unsteady aerodynamic computation methods, such
as the doublet lattice method,15 can be used to calculate the
complex unsteady aerodynamic force coefficient (AFC) ma-
trices due to modal harmonic oscillations for various reduced
frequencies k = cob/V. The aerodynamic model is based on
panels, each having a center of pressure point A and a down-
wash control point C. The self-excitation frequency-domain
aerodynamic forces acting on the vehicle in the structural grid
are

{Fa(ik)} = - (24)

where

where [TAS], [Tcs], and [TaS] are spline transformation ma-
trices from deflections at the structural points to normal de-
flections at points A and C, and angle-of-attack rotations at
points C, respectively. To facilitate the calculation of SOF
loads with standard aerodynamic codes, the load modes [<£,]
are included, with the normal modes [</y], in the set of modes
for which the generalized aerodynamic force (GAF) matrices,

[Qff(ik)] = WlAtik)] and [Q,,(ik}} = [^[As(ik)l are
calculated.

Time-domain modeling requires the GAFs to be approx-
imated by rational interpolation functions in the Laplace s
domain. It is desired to include the coefficients associated
with the load modes in the approximation without affecting
the size of the resulting state-space model. The application
of Roger's approximation9 to dynamic loads analysis required
the development of special terms for the load matrices.3 The
aerodynamic approximations in this work are performed by
the minimum-state (MS) method,10 12 which is somewhat more
complicated, but typically yields a considerably lower number
of aerodynamic states. Due to its generality, the MS method
is applicable to dynamic loads with only a minor modification.
The approximation function, constrained to exactly match
steady aerodynamics, is

2ff] = re,,(o)l2,/J [_a,(o)J

+ M m -+ [D/j (*i/J (25)

where s = sblV. The user defines the m x m diagonal aero-
dynamic lag matrix [R] and two additional approximation
constraints (for each term), which define [ A i f \ , [A\,], [A2/],
and [A2/\ as functions of the other matrix coefficients and the
tabulated data. The [Df] and [E] real coefficient matrices are
calculated by an iterative nonlinear least-square procedure
that fits the tabulated data matrices." The modification in-
troduced in this work is that the resulting [E] is used to cal-
culate [D/] with no iterations. In this way [Df] and [E] are
not affected by the presence of [QfJ] in the approximation,
which implies that the equations of motion are not affected
by the number and type of output loads equations.

A full development of the state-space aeroelastic equations
of motion with aerodynamic control and gust excitations is
given in Ref. 16. The equation of motion of the aeroelastic
system with prescribed external excitation is

(26)

where

M {^i r ^ i
1,1 [b] = \(GMf,,} '(^l {«} = {FCX

JcJ L 0 J

r 0 [/] 0 -]
\A\ = - [ M ] '[K] -[M]-'[B] -q\M] {[Df}\

L 0 [E] (Vlb)[K\ \

[M] = [CM,,] + (qbW*)[AJ [K] = [GK,] + q[Qlfm

[B] = [GBf] + (qb/V)[Alf]

where {*„} is a vector of m aerodynamic states. The state
response {x(t}} to initial conditions and prescribed excitation
forces can be solved for by standard numerical time-simula-
tion routines. Static (steady-state) response to step excitation
can be obtained from the second row partition of Eq. (26)
with {i,} = {£f} = {*„} - (0), which yields

(,} = ([GK,] (27)

where it is assumed that q is smaller than the dynamic pressure
of aeroelastic divergence.
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The aerodynamic contribution to the SOF loads is calcu-
lated from the state response of Eq. (26). The section loads
in Eq. (23) are supplemented by the aerodynamic terms

(28)

When complete SOF load distributions [Eq. (16)] are of in-
terest, the bottom partition of the aerodynamic approxima-
tion in Eq. (25) can be expanded to include the approximation
of [AvW] of Eq. (24). Equation (16) can then be supple-
mented by Eq. (28) with the associated coefficient matrices.

Numerical Example
The numerical example is based on the high aspect ratio

wing model adopted and modified from Ref. 17. A top view
of the NASTRAN structural model, which consists of about
300 grid points, is shown in Fig. 2. The wing semispan is 12
m and its total weight is 1700 kg. The purpose of the numerical
example is to demonstrate the enhanced MD and SOF meth-
ods, especially when applied to aeroelastic systems under local
impulsive excitation. The dynamic loads are due to the re-
sponse (from zero initial conditions) to a step excitation force
of 1 N, applied near the middle of the wing section at y =
7.76 m. This case represents incremental loads due to the
release of external stores from a flight vehicle, simplified for
the purpose of clarity.

We start with the case of a cantilevered wing with no aero-
dynamics. Load modes were generated for the calculation of
the integrated shear force, bending moment, and torsion mo-
ment at 17 sections along the wingspan, which required the
addition.of 17 grid points, each having DOFs in the z, 0V, and
0V directions. The 51 added DOFs, {«/} in Eq. (19), were
loaded by the mass matrix [M,] = 10n[7] where the mass
terms associated with 0V and 0y are mass moments of inertia.
The 16 grid points at each section were triplicated while the
new points were constrained to the original ones and to {«,}
by Eq. (19). As expected, the introduction of the section-load
points and the associated large masses added 51 "broken"
rigid-body modes with negligible effects on the elastic fre-
quencies and modes.

The required modal data was first generated without fic-
titious masses at the excitation point, [Mf] = [0]. The first
demonstration is of the resulting static (steady-state) loads.
The associated SOF shear forces, bending moments and tor-
sion moments are 1, 7.76 - y, and -2.35 + 0.34y, respec-
tively, inboard of section y = 7.76 m, and 0 outboard of this
section. Since the convergence rates and accuracy levels for
the torsion moments throughout the numerical example are
similar to those of the bending moments, and since the torsion
moments are relatively small in our high aspect ratio wing,
we found it sufficient to present and discuss the shear forces
and bending moments only. The variations of integrated shear
and bending moment along the wingspan, calculated by the
MD method with various numbers of wing vibration modes,
are shown in Fig. 3. This case demonstrates the main problem

(0.0,0.0) 3.0 6.0 9.0 12.0

X
M

3.0..

6.0..

Fig. 2 Top view of the structural wing model.

50 modes
40 modes
30 modes
20 modes
10 modes
5 modes

0 2 4 6 8 1 0 1 2 1 4

distance along wing-span (m)

5 . 0

2 . 5

0 . 0 -

-2 . 5

50 modes
40 modes
30 modes

o o o 2 0 modes
10 modes
5 modes

0 2 4 6 8 1 0 1 2 1 4

distance along wing-span (m)
Fig. 3 Mode-displacement shear forces and bending moments along the wingspan, cantilevered, static, no aerodynamics, Mf = 0.
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Table 1 Natural frequencies (Hz) from nominal and fictitious-mass models

Mode
no.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Nominal
frequency

3.138
8.717
11.077
11.679
12.898
22.929
24.935
36.156
39.841
42.794
52.314
52.351
56.508
62.509
69.646
71.595
73.085
85.513
96.783
98.463

nm =5 10
3.142 3.138
8.717 8.717
11.144 11.081
(12.262) 11.693
12.898 12.898
—— 22.930
—— 25.056

36.160
—— 40.334
—— (53.165)

—— ——

—— ——

15
3.138
8.717
11.078
11.680
12.898
22.929
24.945
36.156
39.882
42.896
52.314
52.351
56.926
62.507

(102.235)

——

20
3.137
8.717
11.077
11.679
12.898
22.929
24.937
36.156
39.852
42.822
52.314
52.351
56.597
62.506
69.647
71.661
73.117
86.129
98.071

(125.206)

Largest
error,
%

0.147
0.000
0.601
0.120
0.000
0.002
0.484
0.010
1.236
0.238
0.000
0.000
0.738
0.005
0.001
0.091
0.044
0.720
1.331

1 . 2

0 . 6

0 . 4

0 . 2

0 . 0

- 0 . 2

50 modes
40 modes

• 30 modes
• 20 modes

10 modes
5 modes

2 4 6 8 1 0 1 2

distance along wing-span (m)

5 . 0

2 . 5

0 . 0

-2 . 5

50 modes
40 modes
30 modes
20 modes
10 modes
5 modes

0 2 4 6 8 1 0 1 2 1 4

distance along wing-span (m)
Fig. 4 Mode-displacement shear forces and bending moments along the wingspan, cantilevered, static, no aerodynamics, Mf = 2000 kg.

in using the MD method to estimate loads due to concentrated
forces. More than 20 modes are required to obtain reasonable
shear forces far from the excitation point. Even 50 modes are
not sufficient to obtain high-accuracy shear forces near the
excitation point. The bending moments are more accurate
because they are continuous at the excitation point. The same
MD integrated loads, this time based on modes calculated
with a single additional fictitious-mass term of 2000 kg loading
the excitation point in z direction, are shown in Fig. 4. With
10 modes we now get error levels of less than 2% over the
entire wing. The dramatic improvement is caused by the fact
that the low-frequency modes now contain significant local
distortions near the excitation point, which allows sharp gra-
dients in the resulting load distribution. The MD bending
moments errors are now less than 2%, even with five modes.

The natural frequencies [cofl], obtained by calculating the
fictitious-mass modal properties and then removing the fic-
titious mass using Eqs. (7) and (9), are compared in Table 1
to the natural frequencies of the nominal structure. One fre-
quency in each case, usually the last one, is related to a syn-
thetic local-deformation mode. The synthetic frequency in the
five-mode case is the fourth one, whereas the fifth one relates
to in-plane motion that is not affected by the fictitious mass.
The other frequencies in all the cases are practically identical
to the nominal ones.

As shown in previous applications,4-5-8 it is easy to choose
an adequate size for the fictitious mass. It is only required
that this mass be considerably larger than other masses in the
model, such as Mf = 2000 kg compared with the total wing
mass of 1700 kg in our case, but not large enough to cause
numerical ill-conditioning. Application of excitation forces at
different locations simultaneously requires several fictitious
masses, which yields more local-deformation modes and re-
quires more modes to be considered. Hence, the fictitious-
mass approach is efficient only with a limited number of large
fictitious masses.

The maximum shear forces along the wingspan, calculated
by the MD method during the dynamic response to the step
force, are shown in Fig. 5 for the nominal and fictitious-mass
cases. The modal damping coefficients [£„] in Eq. (12) are
0.01 for all modes, except for the one associated with the
highest frequency of the fictitious-mass case that is set to 0.07
to avoid unrealistically excessive vibrations of the synthetic
mode. Here again, fictitious-mass MD loads are considerably
more accurate than the nominal ones, especially near the
excitation point. The SOF shear forces (not shown) are prac-
tically identical to the MD shear in the fictitious-mass case
with 20 modes and more. The comparison of the nominal-
case part of Fig. 5 with the static shear forces in Fig. 3 indicates
that the MD errors are mainly in the static part of the solution.
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3 . o

2 . 5
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NOMINAL WING CASE
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5 modes
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Mf = 2000 kg.
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Fig. 6 MD and SOF dynamic shear forces vs time, cantilevered, no aerodynamics.

The dynamic (inertial) part of the loads is distributed quite
evenly, and hence, estimated well by the nominal modes. This
point is also demonstrated in Fig. 6, which shows time his-
tories of the shear force at y = 7.05 m (0.71 m inboard of
the excitation point). It can be observed that the main dif-
ference between the 6-mode and the 30-mode nominal MD
cases is a steady shift. This gap is closed by the introduction
of the fictitious mass. It can also be observed that the intro-
duction of the fictitious mass does not have a significant effect
on the SOF loads.

The rest of the numerical example takes into account the
aerodynamic forces. Frequency-domain unsteady GAF ma-
trices were calculated by the doublet lattice method, Mach
0.7, for the 12 reduced frequencies k = 0., 0.01, 0.04, 0.07,
0.1, 0.35, 0.55, 0.75, 1.0, 1.5, 2.5, and 4.0, with the reference
semichordb = 0.5 m. Two aerodynamic approximations, fully
unsteady and quasisteady, were performed to define the GAF
matrix as rational functions of the Laplace variable. The fully

unsteady approximation of Eq. (25) was generated by the
MIST code12 with 10 aerodynamic lag terms, which yields 10
aerodynamic states. The quasisteady approximation was per-
formed by setting [Alf] = Im[Qlf(Q.Ql)]/Q.Ql, [Alt] =
ImfO.XO.OlJl/O.Ol, and [A2f\ = [A2l] = [0], and dropping the
aerodynamic lag term (the last one) in Eq. (25), which yields
an equation of motion (26) with no aerodynamic states.

Convergence plots of the maximum shear force at y = 7.05
m, calculated by the various methods at dynamic pressure of
q = 15,680 N/m2, are shown in Fig. 7. The quasisteady and
the unsteady plots are very similar to each other with the
converged unsteady values being about 2% larger than the
quasisteady values. The effect of including aerodynamic lag
terms is expected to be more significant near the flutter
boundary, which is far from the calculated response point. A
comparison with the fictitious-mass loads at this section in
Fig. 5 shows that the aerodynamic forces reduce the maximum
dynamic loads by about 15%. As before, the fictitious mass
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Fig. 9 Maximum wing-root shear force and bending moment due to step angle of attack.

has a dramatic effect on the accuracy of the MD loads, and
it does not affect the accuracy of the SOF loads.

Dynamic loads were also calculated for the free-free air-
craft with symmetric boundary conditions. The wing model
was extended in this case to include a rigid fuselage whose
weight was about five times that of the wing. The aerodynamic
loads on the added part were ignored. Convergence plots of
the maximum shear force and bending moment at y = 7.05

m, calculated with quasisteady aerodynamics with the number
of elastic modes, are shown in Fig. 8. A comparison with Fig.
7 shows that the inclusion of rigid-body motion reduces the
maximum shear loads by about 7% (due to inertia relief ef-
fects). The convergence behavior of the free-free case are
similar to those of the cantilevered cases.

To complete the investigation, we calculated dynamic MD
and SOF loads due to the well-distributed excitation caused
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by a step angle of attack. Maximum wing-root shear forces
and bending moments vs number of modes are shown in
Fig. 9. The fictitious mass in the 1TICT" cases is located
in the same point as in the previous examples, even though
there is no excitation now at this point. The MD loads here
are considerably more accurate than in the local excitation
cases. It can be observed that, with a small number of modes,
the SOF method still yields more accurate results than the
MD method, and that the presence of the fictitious mass
does not affect the results significantly. With 8 modes and
more for the moment case, and with 15 modes and more
for the shear-force case, all the methods converge to prac-
tically the same results.

Conclusions
Load distributions and integrated section loads during the

dynamic response of structures can be calculated from the
outputs of linear time-invariant generalized-coordinate state-
space equations of motion by either the MD or SOF meth-
ods. While the MD loads are functions of the time history
of the generalized displacements only, SOF loads are func-
tions of the time history of all the states and the excitation
forces. However, in cases of impulsive local excitation, the
MD loads are shown to require a relatively large number
of natural vibration modes to be taken into account. This
problem is solved, for cases with a small number of exci-
tation locations, by using fictitious masses at the excitation
points when the modes are calculated. With this method,
the convergence of the MD loads with the number of modes
is similar to that of the SOF loads. A numerical example
of a single concentrated force acting on a high aspect ratio
wing demonstrates that the modified MD and the SOF
methods with 10 elastic modes yield error levels of less than
2%. Unsteady aerodynamic effects are introduced by the
minimum-state modeling method that added 10 aerody-
namic states to numerical applications with up to 70 struc-
tural states. The minimum-state procedure is modified to
allow the inclusion of unsteady effects in the SOF output
equations without increasing the model size. The aerodyn-
amic effects on the response to store ejection are shown to
be significant (about 15% reduction). However, compari-
sons of dynamic loads with ful ly unsteady aerodynamics and
with quasisteady aerodynamics (which do not require aero-
dynamic states), shows very small differences between them
(less than 2%). The dynamic loads on the free-free case
were about 7% smaller than those of the cantilevered wing
case, due to rigid-body inertia relief effects. Well-distrib-
uted excitation cases were not affected significantly by the
presence of fictitious masses. SOF loads were more accurate
in these cases only when less than 15 modes were taken into
account. With more modes and with fictitious masses at
points of local excitation, the simpler MD method is pref-
erable.
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